Calculadora de integrales definidas e impropias

Calcular integrales definidas e impropias paso a paso

La calculadora intentará evaluar la integral definida (es decir, con límites de integración), incluyendo las impropias, mostrando los pasos.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{20}^{90}\left( 120040 - \frac{6002 x}{5} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\left(120040 - \frac{6002 x}{5}\right)d x}=\frac{3001 x \left(200 - x\right)}{5}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(\frac{3001 x \left(200 - x\right)}{5}\right)|_{\left(x=90\right)}=5941980$$$

$$$\left(\frac{3001 x \left(200 - x\right)}{5}\right)|_{\left(x=20\right)}=2160720$$$

$$$\int_{20}^{90}\left( 120040 - \frac{6002 x}{5} \right)dx=\left(\frac{3001 x \left(200 - x\right)}{5}\right)|_{\left(x=90\right)}-\left(\frac{3001 x \left(200 - x\right)}{5}\right)|_{\left(x=20\right)}=3781260$$$

Answer: $$$\int_{20}^{90}\left( 120040 - \frac{6002 x}{5} \right)dx=3781260$$$


Please try a new game Rotatly