Calculadora de integrales definidas e impropias

Calcular integrales definidas e impropias paso a paso

La calculadora intentará evaluar la integral definida (es decir, con límites de integración), incluyendo las impropias, mostrando los pasos.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{2}^{3}\left( \sqrt{x - 2} + 1 \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\left(\sqrt{x - 2} + 1\right)d x}=x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}\right)|_{\left(x=3\right)}=\frac{11}{3}$$$

$$$\left(x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}\right)|_{\left(x=2\right)}=2$$$

$$$\int_{2}^{3}\left( \sqrt{x - 2} + 1 \right)dx=\left(x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}\right)|_{\left(x=3\right)}-\left(x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}\right)|_{\left(x=2\right)}=\frac{5}{3}$$$

Answer: $$$\int_{2}^{3}\left( \sqrt{x - 2} + 1 \right)dx=\frac{5}{3}\approx 1.66666666666667$$$


Please try a new game Rotatly