Calculadora de integrales definidas e impropias
Calcular integrales definidas e impropias paso a paso
La calculadora intentará evaluar la integral definida (es decir, con límites de integración), incluyendo las impropias, mostrando los pasos.
Solution
Your input: calculate $$$\int_{1}^{2}\left( \frac{1}{x} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\frac{1}{x} d x}=\ln{\left(\left|{x}\right| \right)}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\ln{\left(\left|{x}\right| \right)}\right)|_{\left(x=2\right)}=\ln{\left(2 \right)}$$$
$$$\left(\ln{\left(\left|{x}\right| \right)}\right)|_{\left(x=1\right)}=0$$$
$$$\int_{1}^{2}\left( \frac{1}{x} \right)dx=\left(\ln{\left(\left|{x}\right| \right)}\right)|_{\left(x=2\right)}-\left(\ln{\left(\left|{x}\right| \right)}\right)|_{\left(x=1\right)}=\ln{\left(2 \right)}$$$
Answer: $$$\int_{1}^{2}\left( \frac{1}{x} \right)dx=\ln{\left(2 \right)}\approx 0.693147180559945$$$