Calculadora de integrales definidas e impropias

Calcular integrales definidas e impropias paso a paso

La calculadora intentará evaluar la integral definida (es decir, con límites de integración), incluyendo las impropias, mostrando los pasos.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{\frac{1}{3}}^{\frac{1}{2}}\left( -6 + \frac{1}{t^{3}} \right)dt$$$

First, calculate the corresponding indefinite integral: $$$\int{\left(-6 + \frac{1}{t^{3}}\right)d t}=- 6 t - \frac{1}{2 t^{2}}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(- 6 t - \frac{1}{2 t^{2}}\right)|_{\left(t=\frac{1}{2}\right)}=-5$$$

$$$\left(- 6 t - \frac{1}{2 t^{2}}\right)|_{\left(t=\frac{1}{3}\right)}=- \frac{13}{2}$$$

$$$\int_{\frac{1}{3}}^{\frac{1}{2}}\left( -6 + \frac{1}{t^{3}} \right)dt=\left(- 6 t - \frac{1}{2 t^{2}}\right)|_{\left(t=\frac{1}{2}\right)}-\left(- 6 t - \frac{1}{2 t^{2}}\right)|_{\left(t=\frac{1}{3}\right)}=\frac{3}{2}$$$

Answer: $$$\int_{\frac{1}{3}}^{\frac{1}{2}}\left( -6 + \frac{1}{t^{3}} \right)dt=\frac{3}{2}=1.5$$$


Please try a new game Rotatly