Calculadora de integrales definidas e impropias
Calcular integrales definidas e impropias paso a paso
La calculadora intentará evaluar la integral definida (es decir, con límites de integración), incluyendo las impropias, mostrando los pasos.
Solution
Your input: calculate $$$\int_{0}^{\pi}\left( \sin{\left(\theta \right)} \right)d\theta$$$
First, calculate the corresponding indefinite integral: $$$\int{\sin{\left(\theta \right)} d \theta}=- \cos{\left(\theta \right)}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(- \cos{\left(\theta \right)}\right)|_{\left(\theta=\pi\right)}=1$$$
$$$\left(- \cos{\left(\theta \right)}\right)|_{\left(\theta=0\right)}=-1$$$
$$$\int_{0}^{\pi}\left( \sin{\left(\theta \right)} \right)d\theta=\left(- \cos{\left(\theta \right)}\right)|_{\left(\theta=\pi\right)}-\left(- \cos{\left(\theta \right)}\right)|_{\left(\theta=0\right)}=2$$$
Answer: $$$\int_{0}^{\pi}\left( \sin{\left(\theta \right)} \right)d\theta=2$$$