Calculadora de integrales definidas e impropias
Calcular integrales definidas e impropias paso a paso
La calculadora intentará evaluar la integral definida (es decir, con límites de integración), incluyendo las impropias, mostrando los pasos.
Solution
Your input: calculate $$$\int_{0}^{2}\left( x e^{- x} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{x e^{- x} d x}=\left(- x - 1\right) e^{- x}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\left(- x - 1\right) e^{- x}\right)|_{\left(x=2\right)}=- \frac{3}{e^{2}}$$$
$$$\left(\left(- x - 1\right) e^{- x}\right)|_{\left(x=0\right)}=-1$$$
$$$\int_{0}^{2}\left( x e^{- x} \right)dx=\left(\left(- x - 1\right) e^{- x}\right)|_{\left(x=2\right)}-\left(\left(- x - 1\right) e^{- x}\right)|_{\left(x=0\right)}=1 - \frac{3}{e^{2}}$$$
Answer: $$$\int_{0}^{2}\left( x e^{- x} \right)dx=1 - \frac{3}{e^{2}}\approx 0.593994150290162$$$