Calculadora de integrales definidas e impropias
Calcular integrales definidas e impropias paso a paso
La calculadora intentará evaluar la integral definida (es decir, con límites de integración), incluyendo las impropias, mostrando los pasos.
Solution
Your input: calculate $$$\int_{0}^{1000}\left( - x + e^{x} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\left(- x + e^{x}\right)d x}=- \frac{x^{2}}{2} + e^{x}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(- \frac{x^{2}}{2} + e^{x}\right)|_{\left(x=1000\right)}=-500000 + e^{1000}$$$
$$$\left(- \frac{x^{2}}{2} + e^{x}\right)|_{\left(x=0\right)}=1$$$
$$$\int_{0}^{1000}\left( - x + e^{x} \right)dx=\left(- \frac{x^{2}}{2} + e^{x}\right)|_{\left(x=1000\right)}-\left(- \frac{x^{2}}{2} + e^{x}\right)|_{\left(x=0\right)}=-500001 + e^{1000}$$$
Answer: $$$\int_{0}^{1000}\left( - x + e^{x} \right)dx=-500001 + e^{1000}\approx 1.97007111401705 \cdot 10^{434}$$$