Calculadora de integrales definidas e impropias

Calcular integrales definidas e impropias paso a paso

La calculadora intentará evaluar la integral definida (es decir, con límites de integración), incluyendo las impropias, mostrando los pasos.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{0}^{\pi}\left( \sin^{6}{\left(x \right)} \cos^{3}{\left(x \right)} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\sin^{6}{\left(x \right)} \cos^{3}{\left(x \right)} d x}=- \frac{\sin^{9}{\left(x \right)}}{9} + \frac{\sin^{7}{\left(x \right)}}{7}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(- \frac{\sin^{9}{\left(x \right)}}{9} + \frac{\sin^{7}{\left(x \right)}}{7}\right)|_{\left(x=\pi\right)}=0$$$

$$$\left(- \frac{\sin^{9}{\left(x \right)}}{9} + \frac{\sin^{7}{\left(x \right)}}{7}\right)|_{\left(x=0\right)}=0$$$

$$$\int_{0}^{\pi}\left( \sin^{6}{\left(x \right)} \cos^{3}{\left(x \right)} \right)dx=\left(- \frac{\sin^{9}{\left(x \right)}}{9} + \frac{\sin^{7}{\left(x \right)}}{7}\right)|_{\left(x=\pi\right)}-\left(- \frac{\sin^{9}{\left(x \right)}}{9} + \frac{\sin^{7}{\left(x \right)}}{7}\right)|_{\left(x=0\right)}=0$$$

Answer: $$$\int_{0}^{\pi}\left( \sin^{6}{\left(x \right)} \cos^{3}{\left(x \right)} \right)dx=0$$$


Please try a new game Rotatly