Calculadora de integrales definidas e impropias
Calcular integrales definidas e impropias paso a paso
La calculadora intentará evaluar la integral definida (es decir, con límites de integración), incluyendo las impropias, mostrando los pasos.
Solution
Your input: calculate $$$\int_{-1}^{1}\left( x^{100} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{x^{100} d x}=\frac{x^{101}}{101}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{x^{101}}{101}\right)|_{\left(x=1\right)}=\frac{1}{101}$$$
$$$\left(\frac{x^{101}}{101}\right)|_{\left(x=-1\right)}=- \frac{1}{101}$$$
$$$\int_{-1}^{1}\left( x^{100} \right)dx=\left(\frac{x^{101}}{101}\right)|_{\left(x=1\right)}-\left(\frac{x^{101}}{101}\right)|_{\left(x=-1\right)}=\frac{2}{101}$$$
Answer: $$$\int_{-1}^{1}\left( x^{100} \right)dx=\frac{2}{101}\approx 0.0198019801980198$$$