Segunda derivada de $$$\ln\left(5 x\right)$$$
Calculadoras relacionadas: Calculadora de derivados, Calculadora de diferenciación logarítmica
Tu aportación
Encuentra $$$\frac{d^{2}}{dx^{2}} \left(\ln\left(5 x\right)\right)$$$.
Solución
Encuentra la primera derivada $$$\frac{d}{dx} \left(\ln\left(5 x\right)\right)$$$
La función $$$\ln\left(5 x\right)$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \ln\left(u\right)$$$ y $$$g{\left(x \right)} = 5 x$$$.
Aplicar la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(5 x\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(5 x\right)\right)}$$La derivada del logaritmo natural es $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(5 x\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(5 x\right)$$Vuelva a la variable anterior:
$$\frac{\frac{d}{dx} \left(5 x\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(5 x\right)}{{\color{red}\left(5 x\right)}}$$Aplique la regla del múltiplo constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 5$$$ y $$$f{\left(x \right)} = x$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(5 x\right)\right)}}{5 x} = \frac{{\color{red}\left(5 \frac{d}{dx} \left(x\right)\right)}}{5 x}$$Aplique la regla de potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{x} = \frac{{\color{red}\left(1\right)}}{x}$$Por lo tanto, $$$\frac{d}{dx} \left(\ln\left(5 x\right)\right) = \frac{1}{x}$$$.
A continuación, $$$\frac{d^{2}}{dx^{2}} \left(\ln\left(5 x\right)\right) = \frac{d}{dx} \left(\frac{1}{x}\right)$$$
Aplique la regla de potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = -1$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{x}\right)\right)} = {\color{red}\left(- \frac{1}{x^{2}}\right)}$$Por lo tanto, $$$\frac{d}{dx} \left(\frac{1}{x}\right) = - \frac{1}{x^{2}}$$$.
Por lo tanto, $$$\frac{d^{2}}{dx^{2}} \left(\ln\left(5 x\right)\right) = - \frac{1}{x^{2}}$$$.
Respuesta
$$$\frac{d^{2}}{dx^{2}} \left(\ln\left(5 x\right)\right) = - \frac{1}{x^{2}}$$$A