# Divergence Calculator

## Calculate divergence step by step

The calculator will find the divergence of the given vector field, with steps shown.

Related calculators: Partial Derivative Calculator, Dot Product Calculator

$\langle$
,
,
$\rangle$
$($
,
,
$)$
Leave empty, if you don't need the divergence at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Calculate $\operatorname{div} \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle$.

### Solution

By definition, $\operatorname{div} \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle = \nabla\cdot \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle$, or, equivalently, $\operatorname{div} \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle\cdot \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle$, where $\cdot$ is the dot product operator.

Thus, $\operatorname{div} \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle = \frac{\partial}{\partial x} \left(\sin{\left(x y \right)}\right) + \frac{\partial}{\partial y} \left(\cos{\left(x y \right)}\right) + \frac{\partial}{\partial z} \left(e^{z}\right).$

Find the partial derivative of component 1 with respect to $x$: $\frac{\partial}{\partial x} \left(\sin{\left(x y \right)}\right) = y \cos{\left(x y \right)}$ (for steps, see derivative calculator).

Find the partial derivative of component 2 with respect to $y$: $\frac{\partial}{\partial y} \left(\cos{\left(x y \right)}\right) = - x \sin{\left(x y \right)}$ (for steps, see derivative calculator).

Find the partial derivative of component 3 with respect to $z$: $\frac{\partial}{\partial z} \left(e^{z}\right) = e^{z}$ (for steps, see derivative calculator).

Now, just sum up the above expressions to get the divergence: $\operatorname{div} \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle = - x \sin{\left(x y \right)} + y \cos{\left(x y \right)} + e^{z}.$

$\operatorname{div} \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle = - x \sin{\left(x y \right)} + y \cos{\left(x y \right)} + e^{z}$A