Integral of $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x\, dx$$$.
Solution
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$\color{red}{\int{x d x}}=\color{red}{\frac{x^{1 + 1}}{1 + 1}}=\color{red}{\left(\frac{x^{2}}{2}\right)}$$
Therefore,
$$\int{x d x} = \frac{x^{2}}{2}$$
Add the constant of integration:
$$\int{x d x} = \frac{x^{2}}{2}+C$$
Answer: $$$\int{x d x}=\frac{x^{2}}{2}+C$$$