Integral of $$$\frac{\sin{\left(x \right)}}{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\sin{\left(x \right)}}{x}\, dx$$$.
Solution
This integral (Sine Integral) does not have a closed form:
$$\color{red}{\int{\frac{\sin{\left(x \right)}}{x} d x}} = \color{red}{\operatorname{Si}{\left(x \right)}}$$
Therefore,
$$\int{\frac{\sin{\left(x \right)}}{x} d x} = \operatorname{Si}{\left(x \right)}$$
Add the constant of integration:
$$\int{\frac{\sin{\left(x \right)}}{x} d x} = \operatorname{Si}{\left(x \right)}+C$$
Answer: $$$\int{\frac{\sin{\left(x \right)}}{x} d x}=\operatorname{Si}{\left(x \right)}+C$$$