# Integral of $\ln\left(x^{2}\right)$

The calculator will find the integral/antiderivative of $\ln\left(x^{2}\right)$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $dx$, $dy$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Find $\int 2 \ln\left(x\right)\, dx$.

### Solution

The input is rewritten: $\int{\ln{\left(x^{2} \right)} d x}=\int{2 \ln{\left(x \right)} d x}$

Apply the constant multiple rule $\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$ with $c=2$ and $f{\left(x \right)} = \ln{\left(x \right)}$:

$$\color{red}{\int{2 \ln{\left(x \right)} d x}} = \color{red}{\left(2 \int{\ln{\left(x \right)} d x}\right)}$$

For the integral $\int{\ln{\left(x \right)} d x}$, use integration by parts $\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$.

Let $\operatorname{u}=\ln{\left(x \right)}$ and $\operatorname{dv}=dx$.

Then $\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$ (steps can be seen here) and $\operatorname{v}=\int{1 d x}=x$ (steps can be seen here).

The integral becomes

$$2 \color{red}{\int{\ln{\left(x \right)} d x}}=2 \color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}=2 \color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}$$

Apply the constant rule $\int c\, dx = c x$ with $c=1$:

$$2 x \ln{\left(x \right)} - 2 \color{red}{\int{1 d x}} = 2 x \ln{\left(x \right)} - 2 \color{red}{x}$$

Therefore,

$$\int{2 \ln{\left(x \right)} d x} = 2 x \ln{\left(\left|{x}\right| \right)} - 2 x$$

Simplify:

$$\int{2 \ln{\left(x \right)} d x} = 2 x \left(\ln{\left(\left|{x}\right| \right)} - 1\right)$$

$$\int{2 \ln{\left(x \right)} d x} = 2 x \left(\ln{\left(\left|{x}\right| \right)} - 1\right)+C$$
Answer: $\int{2 \ln{\left(x \right)} d x}=2 x \left(\ln{\left(\left|{x}\right| \right)} - 1\right)+C$