# Integral of $\cot^{2}{\left(x \right)}$

The calculator will find the integral/antiderivative of $\cot^{2}{\left(x \right)}$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $dx$, $dy$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Find $\int \cot^{2}{\left(x \right)}\, dx$.

### Solution

Let $u=\cot{\left(x \right)}$.

Then $du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$ (steps can be seen here), and we have that $\csc^{2}{\left(x \right)} dx = - du$.

The integral becomes

$${\color{red}{\int{\cot^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$

Apply the constant multiple rule $\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$ with $c=-1$ and $f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$:

$${\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$

Rewrite and split the fraction:

$$- {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Integrate term by term:

$$- {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Apply the constant rule $\int c\, du = c u$ with $c=1$:

$$\int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$

The integral of $\frac{1}{u^{2} + 1}$ is $\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$:

$$- u + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Recall that $u=\cot{\left(x \right)}$:

$$\operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} - {\color{red}{\cot{\left(x \right)}}}$$

Therefore,

$$\int{\cot^{2}{\left(x \right)} d x} = - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}$$

$$\int{\cot^{2}{\left(x \right)} d x} = - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}+C$$
Answer: $\int{\cot^{2}{\left(x \right)} d x}=- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}+C$