Integral of $$$4^{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 4^{x}\, dx$$$.
Solution
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=4$$$:
$$\color{red}{\int{4^{x} d x}} = \color{red}{\frac{4^{x}}{\ln{\left(4 \right)}}}$$
Therefore,
$$\int{4^{x} d x} = \frac{4^{x}}{\ln{\left(4 \right)}}$$
Simplify:
$$\int{4^{x} d x} = \frac{4^{x}}{2 \ln{\left(2 \right)}}$$
Add the constant of integration:
$$\int{4^{x} d x} = \frac{4^{x}}{2 \ln{\left(2 \right)}}+C$$
Answer: $$$\int{4^{x} d x}=\frac{4^{x}}{2 \ln{\left(2 \right)}}+C$$$