Integral of $$$3^{x}$$$

The calculator will find the integral/antiderivative of $$$3^{x}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Find $$$\int 3^{x}\, dx$$$.

Solution

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=3$$$:

$$\color{red}{\int{3^{x} d x}} = \color{red}{\frac{3^{x}}{\ln{\left(3 \right)}}}$$

Therefore,

$$\int{3^{x} d x} = \frac{3^{x}}{\ln{\left(3 \right)}}$$

Add the constant of integration:

$$\int{3^{x} d x} = \frac{3^{x}}{\ln{\left(3 \right)}}+C$$

Answer: $$$\int{3^{x} d x}=\frac{3^{x}}{\ln{\left(3 \right)}}+C$$$