Integral of $$$2 x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 2 x\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = x$$$:
$$\color{red}{\int{2 x d x}} = \color{red}{\left(2 \int{x d x}\right)}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$2 \color{red}{\int{x d x}}=2 \color{red}{\frac{x^{1 + 1}}{1 + 1}}=2 \color{red}{\left(\frac{x^{2}}{2}\right)}$$
Therefore,
$$\int{2 x d x} = x^{2}$$
Add the constant of integration:
$$\int{2 x d x} = x^{2}+C$$
Answer: $$$\int{2 x d x}=x^{2}+C$$$