Integral of $$$\frac{1}{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x}\, dx$$$.
Solution
The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(x \right)}$$$
$$\color{red}{\int{\frac{1}{x} d x}} = \color{red}{\ln{\left(x \right)}}$$
Therefore,
$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}+C$$
Answer: $$$\int{\frac{1}{x} d x}=\ln{\left(\left|{x}\right| \right)}+C$$$