Integral of $$$\frac{1}{x^{2} + 4}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x^{2} + 4}\, dx$$$.
Solution
Let $$$u=\frac{x}{2}$$$.
Then $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (steps can be seen here), and we have that $$$dx = 2 du$$$.
The integral can be rewritten as
$$\color{red}{\int{\frac{1}{x^{2} + 4} d x}} = \color{red}{\int{\frac{1}{2 \left(u^{2} + 1\right)} d u}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$:
$$\color{red}{\int{\frac{1}{2 \left(u^{2} + 1\right)} d u}} = \color{red}{\left(\frac{\int{\frac{1}{u^{2} + 1} d u}}{2}\right)}$$
The integral of $$$\frac{1}{u^{2} + 1}$$$ is $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$\frac{\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}{2} = \frac{\color{red}{\operatorname{atan}{\left(u \right)}}}{2}$$
Recall that $$$u=\frac{x}{2}$$$:
$$\frac{\operatorname{atan}{\left(\color{red}{u} \right)}}{2} = \frac{\operatorname{atan}{\left(\color{red}{\left(\frac{x}{2}\right)} \right)}}{2}$$
Therefore,
$$\int{\frac{1}{x^{2} + 4} d x} = \frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{2}$$
Add the constant of integration:
$$\int{\frac{1}{x^{2} + 4} d x} = \frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{2}+C$$
Answer: $$$\int{\frac{1}{x^{2} + 4} d x}=\frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{2}+C$$$