# Second derivative of $x^{2}$

The calculator will find the second derivative of $x^{2}$, with steps shown.

Related calculators: Derivative Calculator, Logarithmic Differentiation Calculator

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Find $\frac{d^{2}}{dx^{2}} \left(x^{2}\right)$.

### Find the first derivative $\frac{d}{dx} \left(x^{2}\right)$

Apply the power rule $\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$ with $n = 2$:

$${\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = {\color{red}\left(2 x\right)}$$

Thus, $\frac{d}{dx} \left(x^{2}\right) = 2 x$.

### Next, $\frac{d^{2}}{dx^{2}} \left(x^{2}\right) = \frac{d}{dx} \left(2 x\right)$

Apply the constant multiple rule $\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$ with $c = 2$ and $f{\left(x \right)} = x$:

$${\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)}$$

Apply the power rule $\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$ with $n = 1$, in other words, $\frac{d}{dx} \left(x\right) = 1$:

$$2 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 2 {\color{red}\left(1\right)}$$

Thus, $\frac{d}{dx} \left(2 x\right) = 2$.

Therefore, $\frac{d^{2}}{dx^{2}} \left(x^{2}\right) = 2$.

$\frac{d^{2}}{dx^{2}} \left(x^{2}\right) = 2$A