Μοναδιαίο διάνυσμα κατά τη διεύθυνση του $$$\left\langle 1, 3, 2\right\rangle$$$
Η είσοδός σας
Βρείτε το μοναδιαίο διάνυσμα στη διεύθυνση του $$$\mathbf{\vec{u}} = \left\langle 1, 3, 2\right\rangle$$$.
Λύση
Το μέτρο του διανύσματος είναι $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{14}$$$ (για τα βήματα, δείτε υπολογιστής μέτρου διανύσματος).
Το μοναδιαίο διάνυσμα προκύπτει διαιρώντας κάθε συνιστώσα του δοθέντος διανύσματος με το μέτρο του.
Επομένως, το μοναδιαίο διάνυσμα είναι $$$\mathbf{\vec{e}} = \left\langle \frac{\sqrt{14}}{14}, \frac{3 \sqrt{14}}{14}, \frac{\sqrt{14}}{7}\right\rangle$$$ (για τα βήματα, δείτε υπολογιστής βαθμωτού πολλαπλασιασμού διανύσματος).
Απάντηση
Το μοναδιαίο διάνυσμα στη διεύθυνση του $$$\left\langle 1, 3, 2\right\rangle$$$A είναι $$$\left\langle \frac{\sqrt{14}}{14}, \frac{3 \sqrt{14}}{14}, \frac{\sqrt{14}}{7}\right\rangle\approx \left\langle 0.267261241912424, 0.801783725737273, 0.534522483824849\right\rangle.$$$A