Συστροφή του $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(2 t \right)}, \cos{\left(2 t \right)}, t\right\rangle$$$
Σχετικός υπολογιστής: Υπολογιστής καμπυλότητας
Η είσοδός σας
Βρείτε τη στρέψη του $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(2 t \right)}, \cos{\left(2 t \right)}, t\right\rangle$$$.
Λύση
Βρείτε την παράγωγο του $$$\mathbf{\vec{r}\left(t\right)}$$$: $$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 2 \cos{\left(2 t \right)}, - 2 \sin{\left(2 t \right)}, 1\right\rangle$$$ (για τα βήματα, δείτε τον υπολογιστή παραγώγων).
Βρείτε την παράγωγο του $$$\mathbf{\vec{r}^{\prime}\left(t\right)}$$$: $$$\mathbf{\vec{r}^{\prime\prime}\left(t\right)} = \left\langle - 4 \sin{\left(2 t \right)}, - 4 \cos{\left(2 t \right)}, 0\right\rangle$$$ (για τα βήματα, δείτε τον υπολογιστή παραγώγων).
Βρείτε το διανυσματικό γινόμενο: $$$\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)} = \left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$ (για τα βήματα, δείτε υπολογιστής διανυσματικού γινομένου).
Βρείτε το μέτρο του $$$\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}$$$: $$$\mathbf{\left\lvert \mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right\rvert} = 4 \sqrt{5}$$$ (για τα βήματα, δείτε υπολογιστής μέτρου).
Βρείτε την παράγωγο του $$$\mathbf{\vec{r}^{\prime\prime}\left(t\right)}$$$: $$$\mathbf{\vec{r}^{\prime\prime\prime}\left(t\right)} = \left\langle - 8 \cos{\left(2 t \right)}, 8 \sin{\left(2 t \right)}, 0\right\rangle$$$ (για τα βήματα, δείτε τον υπολογιστή παραγώγων).
Βρείτε το εσωτερικό γινόμενο: $$$\left(\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right)\cdot \mathbf{\vec{r}^{\prime\prime\prime}\left(t\right)} = -32$$$ (για τα βήματα, δείτε υπολογιστής εσωτερικού γινομένου).
Τέλος, η συστροφή είναι $$$\tau\left(t\right) = \frac{\left(\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right)\cdot \mathbf{\vec{r}^{\prime\prime\prime}\left(t\right)}}{\mathbf{\left\lvert \mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right\rvert}^{2}} = - \frac{2}{5}.$$$
Απάντηση
Η στρέψη είναι $$$\tau\left(t\right) = - \frac{2}{5}$$$A.