Μέτρο του $$$\left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$

Η αριθμομηχανή θα βρει το μέτρο (μήκος, νόρμα) του διανύσματος $$$\left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$, με εμφάνιση των βημάτων.
$$$\langle$$$ $$$\rangle$$$
Διαχωρισμένα με κόμματα.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε το μέτρο (μήκος) του $$$\mathbf{\vec{u}} = \left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$.

Λύση

Το μέτρο ενός διανύσματος δίνεται από τον τύπο $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

Το άθροισμα των τετραγώνων των απόλυτων τιμών των συντεταγμένων είναι $$$\left|{4 \cos{\left(2 t \right)}}\right|^{2} + \left|{- 4 \sin{\left(2 t \right)}}\right|^{2} + \left|{-8}\right|^{2} = 16 \sin^{2}{\left(2 t \right)} + 16 \cos^{2}{\left(2 t \right)} + 64.$$$

Επομένως, το μέτρο του διανύσματος είναι $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{16 \sin^{2}{\left(2 t \right)} + 16 \cos^{2}{\left(2 t \right)} + 64} = 4 \sqrt{5}.$$$

Απάντηση

Το μέτρο είναι $$$4 \sqrt{5}\approx 8.944271909999159$$$A.


Please try a new game Rotatly