Καμπυλότητα της $$$\mathbf{\vec{r}\left(x\right)} = \left\langle x, x^{2}, 0\right\rangle$$$

Η αριθμομηχανή θα βρει την καμπυλότητα της συνάρτησης $$$\mathbf{\vec{r}\left(x\right)} = \left\langle x, x^{2}, 0\right\rangle$$$, με εμφάνιση των βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής Μοναδιαίου Δικανονικού Διανύσματος, Υπολογιστής στρέψης

$$$\langle$$$
,
,
$$$\rangle$$$
Αν έχετε μια ρητά δοσμένη συνάρτηση $$$y = f{\left(x \right)}$$$, εισαγάγετέ την ως $$$x$$$, $$$f{\left(x \right)}$$$, $$$0$$$. Για παράδειγμα, η καμπυλότητα του $$$y = x^{2}$$$ μπορεί να βρεθεί εδώ.
Αφήστε κενό εάν δεν χρειάζεστε την καμπυλότητα σε συγκεκριμένο σημείο.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε την καμπυλότητα του $$$\mathbf{\vec{r}\left(x\right)} = \left\langle x, x^{2}, 0\right\rangle$$$.

Λύση

Βρείτε την παράγωγο του $$$\mathbf{\vec{r}\left(x\right)}$$$: $$$\mathbf{\vec{r}^{\prime}\left(x\right)} = \left\langle 1, 2 x, 0\right\rangle$$$ (για τα βήματα, δείτε τον υπολογιστή παραγώγων).

Βρείτε το μέτρο του $$$\mathbf{\vec{r}^{\prime}\left(x\right)}$$$: $$$\mathbf{\left\lvert \mathbf{\vec{r}^{\prime}\left(x\right)}\right\rvert} = \sqrt{4 x^{2} + 1}$$$ (για τα βήματα, δείτε υπολογιστής μέτρου).

Βρείτε την παράγωγο του $$$\mathbf{\vec{r}^{\prime}\left(x\right)}$$$: $$$\mathbf{\vec{r}^{\prime\prime}\left(x\right)} = \left\langle 0, 2, 0\right\rangle$$$ (για τα βήματα, δείτε τον υπολογιστή παραγώγων).

Βρείτε το διανυσματικό γινόμενο: $$$\mathbf{\vec{r}^{\prime}\left(x\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(x\right)} = \left\langle 0, 0, 2\right\rangle$$$ (για τα βήματα, δείτε υπολογιστής διανυσματικού γινομένου).

Βρείτε το μέτρο του $$$\mathbf{\vec{r}^{\prime}\left(x\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(x\right)}$$$: $$$\mathbf{\left\lvert \mathbf{\vec{r}^{\prime}\left(x\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(x\right)}\right\rvert} = 2$$$ (για τα βήματα, δείτε υπολογιστής μέτρου).

Τέλος, η καμπυλότητα είναι $$$\kappa\left(x\right) = \frac{\mathbf{\left\lvert \mathbf{\vec{r}^{\prime}\left(x\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(x\right)}\right\rvert}}{\mathbf{\left\lvert \mathbf{\vec{r}^{\prime}\left(x\right)}\right\rvert}^{3}} = \frac{2}{\left(4 x^{2} + 1\right)^{\frac{3}{2}}}.$$$

Απάντηση

Η καμπυλότητα είναι $$$\kappa\left(x\right) = \frac{2}{\left(4 x^{2} + 1\right)^{\frac{3}{2}}}$$$A.


Please try a new game Rotatly