Ολοκλήρωμα της $$$- t^{2} + 2 z^{20}$$$ ως προς $$$t$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$- t^{2} + 2 z^{20}$$$ ως προς $$$t$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(- t^{2} + 2 z^{20}\right)\, dt$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(- t^{2} + 2 z^{20}\right)d t}}} = {\color{red}{\left(- \int{t^{2} d t} + \int{2 z^{20} d t}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:

$$\int{2 z^{20} d t} - {\color{red}{\int{t^{2} d t}}}=\int{2 z^{20} d t} - {\color{red}{\frac{t^{1 + 2}}{1 + 2}}}=\int{2 z^{20} d t} - {\color{red}{\left(\frac{t^{3}}{3}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dt = c t$$$ με $$$c=2 z^{20}$$$:

$$- \frac{t^{3}}{3} + {\color{red}{\int{2 z^{20} d t}}} = - \frac{t^{3}}{3} + {\color{red}{\left(2 t z^{20}\right)}}$$

Επομένως,

$$\int{\left(- t^{2} + 2 z^{20}\right)d t} = - \frac{t^{3}}{3} + 2 t z^{20}$$

Απλοποιήστε:

$$\int{\left(- t^{2} + 2 z^{20}\right)d t} = \frac{t \left(- t^{2} + 6 z^{20}\right)}{3}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(- t^{2} + 2 z^{20}\right)d t} = \frac{t \left(- t^{2} + 6 z^{20}\right)}{3}+C$$

Απάντηση

$$$\int \left(- t^{2} + 2 z^{20}\right)\, dt = \frac{t \left(- t^{2} + 6 z^{20}\right)}{3} + C$$$A


Please try a new game Rotatly