Ολοκλήρωμα του $$$x^{2} - \frac{12}{x^{31}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$x^{2} - \frac{12}{x^{31}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(x^{2} - \frac{12}{x^{31}}\right)\, dx$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(x^{2} - \frac{12}{x^{31}}\right)d x}}} = {\color{red}{\left(- \int{\frac{12}{x^{31}} d x} + \int{x^{2} d x}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:

$$- \int{\frac{12}{x^{31}} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{\frac{12}{x^{31}} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{\frac{12}{x^{31}} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=12$$$ και $$$f{\left(x \right)} = \frac{1}{x^{31}}$$$:

$$\frac{x^{3}}{3} - {\color{red}{\int{\frac{12}{x^{31}} d x}}} = \frac{x^{3}}{3} - {\color{red}{\left(12 \int{\frac{1}{x^{31}} d x}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=-31$$$:

$$\frac{x^{3}}{3} - 12 {\color{red}{\int{\frac{1}{x^{31}} d x}}}=\frac{x^{3}}{3} - 12 {\color{red}{\int{x^{-31} d x}}}=\frac{x^{3}}{3} - 12 {\color{red}{\frac{x^{-31 + 1}}{-31 + 1}}}=\frac{x^{3}}{3} - 12 {\color{red}{\left(- \frac{x^{-30}}{30}\right)}}=\frac{x^{3}}{3} - 12 {\color{red}{\left(- \frac{1}{30 x^{30}}\right)}}$$

Επομένως,

$$\int{\left(x^{2} - \frac{12}{x^{31}}\right)d x} = \frac{x^{3}}{3} + \frac{2}{5 x^{30}}$$

Απλοποιήστε:

$$\int{\left(x^{2} - \frac{12}{x^{31}}\right)d x} = \frac{5 x^{33} + 6}{15 x^{30}}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(x^{2} - \frac{12}{x^{31}}\right)d x} = \frac{5 x^{33} + 6}{15 x^{30}}+C$$

Απάντηση

$$$\int \left(x^{2} - \frac{12}{x^{31}}\right)\, dx = \frac{5 x^{33} + 6}{15 x^{30}} + C$$$A


Please try a new game Rotatly