Ολοκλήρωμα της $$$\omega t \cos{\left(2 \right)}$$$ ως προς $$$t$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$\omega t \cos{\left(2 \right)}$$$ ως προς $$$t$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \omega t \cos{\left(2 \right)}\, dt$$$.

Οι τριγωνομετρικές συναρτήσεις αναμένουν το όρισμα σε ακτίνια. Για να εισαγάγετε το όρισμα σε μοίρες, πολλαπλασιάστε το με pi/180, π.χ. γράψτε 45° ως 45*pi/180, ή χρησιμοποιήστε την κατάλληλη συνάρτηση προσθέτοντας 'd', π.χ. γράψτε sin(45°) ως sind(45).

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=\omega \cos{\left(2 \right)}$$$ και $$$f{\left(t \right)} = t$$$:

$${\color{red}{\int{\omega t \cos{\left(2 \right)} d t}}} = {\color{red}{\omega \cos{\left(2 \right)} \int{t d t}}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:

$$\omega \cos{\left(2 \right)} {\color{red}{\int{t d t}}}=\omega \cos{\left(2 \right)} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=\omega \cos{\left(2 \right)} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$

Επομένως,

$$\int{\omega t \cos{\left(2 \right)} d t} = \frac{\omega t^{2} \cos{\left(2 \right)}}{2}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\omega t \cos{\left(2 \right)} d t} = \frac{\omega t^{2} \cos{\left(2 \right)}}{2}+C$$

Απάντηση

$$$\int \omega t \cos{\left(2 \right)}\, dt = \frac{\omega t^{2} \cos{\left(2 \right)}}{2} + C$$$A


Please try a new game Rotatly