Ολοκλήρωμα του $$$e^{\frac{x}{2}} - 2$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \left(e^{\frac{x}{2}} - 2\right)\, dx$$$.
Λύση
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(e^{\frac{x}{2}} - 2\right)d x}}} = {\color{red}{\left(- \int{2 d x} + \int{e^{\frac{x}{2}} d x}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=2$$$:
$$\int{e^{\frac{x}{2}} d x} - {\color{red}{\int{2 d x}}} = \int{e^{\frac{x}{2}} d x} - {\color{red}{\left(2 x\right)}}$$
Έστω $$$u=\frac{x}{2}$$$.
Τότε $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = 2 du$$$.
Το ολοκλήρωμα γίνεται
$$- 2 x + {\color{red}{\int{e^{\frac{x}{2}} d x}}} = - 2 x + {\color{red}{\int{2 e^{u} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=2$$$ και $$$f{\left(u \right)} = e^{u}$$$:
$$- 2 x + {\color{red}{\int{2 e^{u} d u}}} = - 2 x + {\color{red}{\left(2 \int{e^{u} d u}\right)}}$$
Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{u} d u} = e^{u}$$$:
$$- 2 x + 2 {\color{red}{\int{e^{u} d u}}} = - 2 x + 2 {\color{red}{e^{u}}}$$
Θυμηθείτε ότι $$$u=\frac{x}{2}$$$:
$$- 2 x + 2 e^{{\color{red}{u}}} = - 2 x + 2 e^{{\color{red}{\left(\frac{x}{2}\right)}}}$$
Επομένως,
$$\int{\left(e^{\frac{x}{2}} - 2\right)d x} = - 2 x + 2 e^{\frac{x}{2}}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\left(e^{\frac{x}{2}} - 2\right)d x} = - 2 x + 2 e^{\frac{x}{2}}+C$$
Απάντηση
$$$\int \left(e^{\frac{x}{2}} - 2\right)\, dx = \left(- 2 x + 2 e^{\frac{x}{2}}\right) + C$$$A