Ολοκλήρωμα του $$$\frac{\tan{\left(x \right)}}{23}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{\tan{\left(x \right)}}{23}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{\tan{\left(x \right)}}{23}\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{23}$$$ και $$$f{\left(x \right)} = \tan{\left(x \right)}$$$:

$${\color{red}{\int{\frac{\tan{\left(x \right)}}{23} d x}}} = {\color{red}{\left(\frac{\int{\tan{\left(x \right)} d x}}{23}\right)}}$$

Ξαναγράψτε την εφαπτομένη ως $$$\tan\left(x\right)=\frac{\sin\left(x\right)}{\cos\left(x\right)}$$$:

$$\frac{{\color{red}{\int{\tan{\left(x \right)} d x}}}}{23} = \frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}}{23}$$

Έστω $$$u=\cos{\left(x \right)}$$$.

Τότε $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\sin{\left(x \right)} dx = - du$$$.

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$$\frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}}{23} = \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{23}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=-1$$$ και $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$\frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{23} = \frac{{\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}}{23}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{23} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{23}$$

Θυμηθείτε ότι $$$u=\cos{\left(x \right)}$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{23} = - \frac{\ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{23}$$

Επομένως,

$$\int{\frac{\tan{\left(x \right)}}{23} d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}}{23}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{\tan{\left(x \right)}}{23} d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}}{23}+C$$

Απάντηση

$$$\int \frac{\tan{\left(x \right)}}{23}\, dx = - \frac{\ln\left(\left|{\cos{\left(x \right)}}\right|\right)}{23} + C$$$A


Please try a new game Rotatly