Ολοκλήρωμα του $$$4 x^{3} - x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \left(4 x^{3} - x\right)\, dx$$$.
Λύση
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(4 x^{3} - x\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{4 x^{3} d x}\right)}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:
$$\int{4 x^{3} d x} - {\color{red}{\int{x d x}}}=\int{4 x^{3} d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{4 x^{3} d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=4$$$ και $$$f{\left(x \right)} = x^{3}$$$:
$$- \frac{x^{2}}{2} + {\color{red}{\int{4 x^{3} d x}}} = - \frac{x^{2}}{2} + {\color{red}{\left(4 \int{x^{3} d x}\right)}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=3$$$:
$$- \frac{x^{2}}{2} + 4 {\color{red}{\int{x^{3} d x}}}=- \frac{x^{2}}{2} + 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \frac{x^{2}}{2} + 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Επομένως,
$$\int{\left(4 x^{3} - x\right)d x} = x^{4} - \frac{x^{2}}{2}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\left(4 x^{3} - x\right)d x} = x^{4} - \frac{x^{2}}{2}+C$$
Απάντηση
$$$\int \left(4 x^{3} - x\right)\, dx = \left(x^{4} - \frac{x^{2}}{2}\right) + C$$$A