Ολοκλήρωμα του $$$37000 e^{- \frac{9 t}{100}}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int 37000 e^{- \frac{9 t}{100}}\, dt$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=37000$$$ και $$$f{\left(t \right)} = e^{- \frac{9 t}{100}}$$$:
$${\color{red}{\int{37000 e^{- \frac{9 t}{100}} d t}}} = {\color{red}{\left(37000 \int{e^{- \frac{9 t}{100}} d t}\right)}}$$
Έστω $$$u=- \frac{9 t}{100}$$$.
Τότε $$$du=\left(- \frac{9 t}{100}\right)^{\prime }dt = - \frac{9 dt}{100}$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dt = - \frac{100 du}{9}$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$$37000 {\color{red}{\int{e^{- \frac{9 t}{100}} d t}}} = 37000 {\color{red}{\int{\left(- \frac{100 e^{u}}{9}\right)d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=- \frac{100}{9}$$$ και $$$f{\left(u \right)} = e^{u}$$$:
$$37000 {\color{red}{\int{\left(- \frac{100 e^{u}}{9}\right)d u}}} = 37000 {\color{red}{\left(- \frac{100 \int{e^{u} d u}}{9}\right)}}$$
Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{3700000 {\color{red}{\int{e^{u} d u}}}}{9} = - \frac{3700000 {\color{red}{e^{u}}}}{9}$$
Θυμηθείτε ότι $$$u=- \frac{9 t}{100}$$$:
$$- \frac{3700000 e^{{\color{red}{u}}}}{9} = - \frac{3700000 e^{{\color{red}{\left(- \frac{9 t}{100}\right)}}}}{9}$$
Επομένως,
$$\int{37000 e^{- \frac{9 t}{100}} d t} = - \frac{3700000 e^{- \frac{9 t}{100}}}{9}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{37000 e^{- \frac{9 t}{100}} d t} = - \frac{3700000 e^{- \frac{9 t}{100}}}{9}+C$$
Απάντηση
$$$\int 37000 e^{- \frac{9 t}{100}}\, dt = - \frac{3700000 e^{- \frac{9 t}{100}}}{9} + C$$$A