Ολοκλήρωμα του $$$\frac{312 \pi \left(4 - \frac{4 x}{9}\right)^{2}}{5}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{312 \pi \left(4 - \frac{4 x}{9}\right)^{2}}{5}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{312 \pi \left(4 - \frac{4 x}{9}\right)^{2}}{5}\, dx$$$.

Λύση

Απλοποιήστε τον ολοκληρωτέο:

$${\color{red}{\int{\frac{312 \pi \left(4 - \frac{4 x}{9}\right)^{2}}{5} d x}}} = {\color{red}{\int{\left(\frac{1664 \pi x^{2}}{135} - \frac{3328 \pi x}{15} + \frac{4992 \pi}{5}\right)d x}}}$$

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(\frac{1664 \pi x^{2}}{135} - \frac{3328 \pi x}{15} + \frac{4992 \pi}{5}\right)d x}}} = {\color{red}{\left(\int{\frac{4992 \pi}{5} d x} - \int{\frac{3328 \pi x}{15} d x} + \int{\frac{1664 \pi x^{2}}{135} d x}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=\frac{4992 \pi}{5}$$$:

$$- \int{\frac{3328 \pi x}{15} d x} + \int{\frac{1664 \pi x^{2}}{135} d x} + {\color{red}{\int{\frac{4992 \pi}{5} d x}}} = - \int{\frac{3328 \pi x}{15} d x} + \int{\frac{1664 \pi x^{2}}{135} d x} + {\color{red}{\left(\frac{4992 \pi x}{5}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{3328 \pi}{15}$$$ και $$$f{\left(x \right)} = x$$$:

$$\frac{4992 \pi x}{5} + \int{\frac{1664 \pi x^{2}}{135} d x} - {\color{red}{\int{\frac{3328 \pi x}{15} d x}}} = \frac{4992 \pi x}{5} + \int{\frac{1664 \pi x^{2}}{135} d x} - {\color{red}{\left(\frac{3328 \pi \int{x d x}}{15}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:

$$\frac{4992 \pi x}{5} + \int{\frac{1664 \pi x^{2}}{135} d x} - \frac{3328 \pi {\color{red}{\int{x d x}}}}{15}=\frac{4992 \pi x}{5} + \int{\frac{1664 \pi x^{2}}{135} d x} - \frac{3328 \pi {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{15}=\frac{4992 \pi x}{5} + \int{\frac{1664 \pi x^{2}}{135} d x} - \frac{3328 \pi {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{15}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1664 \pi}{135}$$$ και $$$f{\left(x \right)} = x^{2}$$$:

$$- \frac{1664 \pi x^{2}}{15} + \frac{4992 \pi x}{5} + {\color{red}{\int{\frac{1664 \pi x^{2}}{135} d x}}} = - \frac{1664 \pi x^{2}}{15} + \frac{4992 \pi x}{5} + {\color{red}{\left(\frac{1664 \pi \int{x^{2} d x}}{135}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:

$$- \frac{1664 \pi x^{2}}{15} + \frac{4992 \pi x}{5} + \frac{1664 \pi {\color{red}{\int{x^{2} d x}}}}{135}=- \frac{1664 \pi x^{2}}{15} + \frac{4992 \pi x}{5} + \frac{1664 \pi {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{135}=- \frac{1664 \pi x^{2}}{15} + \frac{4992 \pi x}{5} + \frac{1664 \pi {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{135}$$

Επομένως,

$$\int{\frac{312 \pi \left(4 - \frac{4 x}{9}\right)^{2}}{5} d x} = \frac{1664 \pi x^{3}}{405} - \frac{1664 \pi x^{2}}{15} + \frac{4992 \pi x}{5}$$

Απλοποιήστε:

$$\int{\frac{312 \pi \left(4 - \frac{4 x}{9}\right)^{2}}{5} d x} = \frac{1664 \pi x \left(x^{2} - 27 x + 243\right)}{405}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{312 \pi \left(4 - \frac{4 x}{9}\right)^{2}}{5} d x} = \frac{1664 \pi x \left(x^{2} - 27 x + 243\right)}{405}+C$$

Απάντηση

$$$\int \frac{312 \pi \left(4 - \frac{4 x}{9}\right)^{2}}{5}\, dx = \frac{1664 \pi x \left(x^{2} - 27 x + 243\right)}{405} + C$$$A


Please try a new game Rotatly