Ολοκλήρωμα του $$$- \sin^{3}{\left(\theta \right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \left(- \sin^{3}{\left(\theta \right)}\right)\, d\theta$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ με $$$c=-1$$$ και $$$f{\left(\theta \right)} = \sin^{3}{\left(\theta \right)}$$$:
$${\color{red}{\int{\left(- \sin^{3}{\left(\theta \right)}\right)d \theta}}} = {\color{red}{\left(- \int{\sin^{3}{\left(\theta \right)} d \theta}\right)}}$$
Εξάγετε έναν παράγοντα του ημιτόνου και γράψτε τα υπόλοιπα σε όρους του συνημιτόνου, χρησιμοποιώντας τον τύπο $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ με $$$\alpha=\theta$$$:
$$- {\color{red}{\int{\sin^{3}{\left(\theta \right)} d \theta}}} = - {\color{red}{\int{\left(1 - \cos^{2}{\left(\theta \right)}\right) \sin{\left(\theta \right)} d \theta}}}$$
Έστω $$$u=\cos{\left(\theta \right)}$$$.
Τότε $$$du=\left(\cos{\left(\theta \right)}\right)^{\prime }d\theta = - \sin{\left(\theta \right)} d\theta$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\sin{\left(\theta \right)} d\theta = - du$$$.
Επομένως,
$$- {\color{red}{\int{\left(1 - \cos^{2}{\left(\theta \right)}\right) \sin{\left(\theta \right)} d \theta}}} = - {\color{red}{\int{\left(u^{2} - 1\right)d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=-1$$$ και $$$f{\left(u \right)} = 1 - u^{2}$$$:
$$- {\color{red}{\int{\left(u^{2} - 1\right)d u}}} = - {\color{red}{\left(- \int{\left(1 - u^{2}\right)d u}\right)}}$$
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(1 - u^{2}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:
$$- \int{u^{2} d u} + {\color{red}{\int{1 d u}}} = - \int{u^{2} d u} + {\color{red}{u}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:
$$u - {\color{red}{\int{u^{2} d u}}}=u - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=u - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Θυμηθείτε ότι $$$u=\cos{\left(\theta \right)}$$$:
$${\color{red}{u}} - \frac{{\color{red}{u}}^{3}}{3} = {\color{red}{\cos{\left(\theta \right)}}} - \frac{{\color{red}{\cos{\left(\theta \right)}}}^{3}}{3}$$
Επομένως,
$$\int{\left(- \sin^{3}{\left(\theta \right)}\right)d \theta} = - \frac{\cos^{3}{\left(\theta \right)}}{3} + \cos{\left(\theta \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\left(- \sin^{3}{\left(\theta \right)}\right)d \theta} = - \frac{\cos^{3}{\left(\theta \right)}}{3} + \cos{\left(\theta \right)}+C$$
Απάντηση
$$$\int \left(- \sin^{3}{\left(\theta \right)}\right)\, d\theta = \left(- \frac{\cos^{3}{\left(\theta \right)}}{3} + \cos{\left(\theta \right)}\right) + C$$$A