Ολοκλήρωμα του $$$x \cos{\left(x \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$x \cos{\left(x \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int x \cos{\left(x \right)}\, dx$$$.

Λύση

Για το ολοκλήρωμα $$$\int{x \cos{\left(x \right)} d x}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Έστω $$$\operatorname{u}=x$$$ και $$$\operatorname{dv}=\cos{\left(x \right)} dx$$$.

Τότε $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{\cos{\left(x \right)} d x}=\sin{\left(x \right)}$$$ (τα βήματα φαίνονται »).

Επομένως,

$${\color{red}{\int{x \cos{\left(x \right)} d x}}}={\color{red}{\left(x \cdot \sin{\left(x \right)}-\int{\sin{\left(x \right)} \cdot 1 d x}\right)}}={\color{red}{\left(x \sin{\left(x \right)} - \int{\sin{\left(x \right)} d x}\right)}}$$

Το ολοκλήρωμα του ημιτόνου είναι $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$x \sin{\left(x \right)} - {\color{red}{\int{\sin{\left(x \right)} d x}}} = x \sin{\left(x \right)} - {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$

Επομένως,

$$\int{x \cos{\left(x \right)} d x} = x \sin{\left(x \right)} + \cos{\left(x \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{x \cos{\left(x \right)} d x} = x \sin{\left(x \right)} + \cos{\left(x \right)}+C$$

Απάντηση

$$$\int x \cos{\left(x \right)}\, dx = \left(x \sin{\left(x \right)} + \cos{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly