Ολοκλήρωμα του $$$x - 8 - \frac{4 e^{x}}{x}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$x - 8 - \frac{4 e^{x}}{x}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(x - 8 - \frac{4 e^{x}}{x}\right)\, dx$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(x - 8 - \frac{4 e^{x}}{x}\right)d x}}} = {\color{red}{\left(- \int{8 d x} + \int{x d x} - \int{\frac{4 e^{x}}{x} d x}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=8$$$:

$$\int{x d x} - \int{\frac{4 e^{x}}{x} d x} - {\color{red}{\int{8 d x}}} = \int{x d x} - \int{\frac{4 e^{x}}{x} d x} - {\color{red}{\left(8 x\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:

$$- 8 x - \int{\frac{4 e^{x}}{x} d x} + {\color{red}{\int{x d x}}}=- 8 x - \int{\frac{4 e^{x}}{x} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 8 x - \int{\frac{4 e^{x}}{x} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=4$$$ και $$$f{\left(x \right)} = \frac{e^{x}}{x}$$$:

$$\frac{x^{2}}{2} - 8 x - {\color{red}{\int{\frac{4 e^{x}}{x} d x}}} = \frac{x^{2}}{2} - 8 x - {\color{red}{\left(4 \int{\frac{e^{x}}{x} d x}\right)}}$$

Αυτό το ολοκλήρωμα (Εκθετικό Ολοκλήρωμα) δεν έχει κλειστή μορφή:

$$\frac{x^{2}}{2} - 8 x - 4 {\color{red}{\int{\frac{e^{x}}{x} d x}}} = \frac{x^{2}}{2} - 8 x - 4 {\color{red}{\operatorname{Ei}{\left(x \right)}}}$$

Επομένως,

$$\int{\left(x - 8 - \frac{4 e^{x}}{x}\right)d x} = \frac{x^{2}}{2} - 8 x - 4 \operatorname{Ei}{\left(x \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(x - 8 - \frac{4 e^{x}}{x}\right)d x} = \frac{x^{2}}{2} - 8 x - 4 \operatorname{Ei}{\left(x \right)}+C$$

Απάντηση

$$$\int \left(x - 8 - \frac{4 e^{x}}{x}\right)\, dx = \left(\frac{x^{2}}{2} - 8 x - 4 \operatorname{Ei}{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly