Ολοκλήρωμα της $$$3 x^{6} y^{3}$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int 3 x^{6} y^{3}\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=3 y^{3}$$$ και $$$f{\left(x \right)} = x^{6}$$$:
$${\color{red}{\int{3 x^{6} y^{3} d x}}} = {\color{red}{\left(3 y^{3} \int{x^{6} d x}\right)}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=6$$$:
$$3 y^{3} {\color{red}{\int{x^{6} d x}}}=3 y^{3} {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=3 y^{3} {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$
Επομένως,
$$\int{3 x^{6} y^{3} d x} = \frac{3 x^{7} y^{3}}{7}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{3 x^{6} y^{3} d x} = \frac{3 x^{7} y^{3}}{7}+C$$
Απάντηση
$$$\int 3 x^{6} y^{3}\, dx = \frac{3 x^{7} y^{3}}{7} + C$$$A