Ολοκλήρωμα της $$$x^{n} \left(1 - x\right)$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int x^{n} \left(1 - x\right)\, dx$$$.
Λύση
Αυτό το ολοκλήρωμα δεν έχει κλειστή μορφή:
$${\color{red}{\int{x^{n} \left(1 - x\right) d x}}} = {\color{red}{\frac{x^{n + 1} {{}_{2}F_{1}\left(\begin{matrix} -1, n + 1 \\ n + 2 \end{matrix}\middle| {x} \right)}}{n + 1}}}$$
Επομένως,
$$\int{x^{n} \left(1 - x\right) d x} = \frac{x^{n + 1} {{}_{2}F_{1}\left(\begin{matrix} -1, n + 1 \\ n + 2 \end{matrix}\middle| {x} \right)}}{n + 1}$$
Απλοποιήστε:
$$\int{x^{n} \left(1 - x\right) d x} = \frac{x^{n + 1} \left(n - x \left(n + 1\right) + 2\right)}{\left(n + 1\right) \left(n + 2\right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{x^{n} \left(1 - x\right) d x} = \frac{x^{n + 1} \left(n - x \left(n + 1\right) + 2\right)}{\left(n + 1\right) \left(n + 2\right)}+C$$
Απάντηση
$$$\int x^{n} \left(1 - x\right)\, dx = \frac{x^{n + 1} \left(n - x \left(n + 1\right) + 2\right)}{\left(n + 1\right) \left(n + 2\right)} + C$$$A