Ολοκλήρωμα του $$$12 x^{2} \ln\left(x\right)$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$12 x^{2} \ln\left(x\right)$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int 12 x^{2} \ln\left(x\right)\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=12$$$ και $$$f{\left(x \right)} = x^{2} \ln{\left(x \right)}$$$:

$${\color{red}{\int{12 x^{2} \ln{\left(x \right)} d x}}} = {\color{red}{\left(12 \int{x^{2} \ln{\left(x \right)} d x}\right)}}$$

Για το ολοκλήρωμα $$$\int{x^{2} \ln{\left(x \right)} d x}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Έστω $$$\operatorname{u}=\ln{\left(x \right)}$$$ και $$$\operatorname{dv}=x^{2} dx$$$.

Τότε $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{x^{2} d x}=\frac{x^{3}}{3}$$$ (τα βήματα φαίνονται »).

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$$12 {\color{red}{\int{x^{2} \ln{\left(x \right)} d x}}}=12 {\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{3}}{3}-\int{\frac{x^{3}}{3} \cdot \frac{1}{x} d x}\right)}}=12 {\color{red}{\left(\frac{x^{3} \ln{\left(x \right)}}{3} - \int{\frac{x^{2}}{3} d x}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{3}$$$ και $$$f{\left(x \right)} = x^{2}$$$:

$$4 x^{3} \ln{\left(x \right)} - 12 {\color{red}{\int{\frac{x^{2}}{3} d x}}} = 4 x^{3} \ln{\left(x \right)} - 12 {\color{red}{\left(\frac{\int{x^{2} d x}}{3}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:

$$4 x^{3} \ln{\left(x \right)} - 4 {\color{red}{\int{x^{2} d x}}}=4 x^{3} \ln{\left(x \right)} - 4 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=4 x^{3} \ln{\left(x \right)} - 4 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Επομένως,

$$\int{12 x^{2} \ln{\left(x \right)} d x} = 4 x^{3} \ln{\left(x \right)} - \frac{4 x^{3}}{3}$$

Απλοποιήστε:

$$\int{12 x^{2} \ln{\left(x \right)} d x} = x^{3} \left(4 \ln{\left(x \right)} - \frac{4}{3}\right)$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{12 x^{2} \ln{\left(x \right)} d x} = x^{3} \left(4 \ln{\left(x \right)} - \frac{4}{3}\right)+C$$

Απάντηση

$$$\int 12 x^{2} \ln\left(x\right)\, dx = x^{3} \left(4 \ln\left(x\right) - \frac{4}{3}\right) + C$$$A


Please try a new game Rotatly