Ολοκλήρωμα της $$$\frac{x}{k - x^{2}}$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{x}{k - x^{2}}\, dx$$$.
Λύση
Έστω $$$u=k - x^{2}$$$.
Τότε $$$du=\left(k - x^{2}\right)^{\prime }dx = - 2 x dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$x dx = - \frac{du}{2}$$$.
Επομένως,
$${\color{red}{\int{\frac{x}{k - x^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=- \frac{1}{2}$$$ και $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u} d u}}{2}\right)}}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Θυμηθείτε ότι $$$u=k - x^{2}$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\left(k - x^{2}\right)}}}\right| \right)}}{2}$$
Επομένως,
$$\int{\frac{x}{k - x^{2}} d x} = - \frac{\ln{\left(\left|{k - x^{2}}\right| \right)}}{2}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{x}{k - x^{2}} d x} = - \frac{\ln{\left(\left|{k - x^{2}}\right| \right)}}{2}+C$$
Απάντηση
$$$\int \frac{x}{k - x^{2}}\, dx = - \frac{\ln\left(\left|{k - x^{2}}\right|\right)}{2} + C$$$A