Ολοκλήρωμα του $$$\frac{\sqrt{x^{2} - 1}}{x}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{\sqrt{x^{2} - 1}}{x}\, dx$$$.
Λύση
Έστω $$$x=\cosh{\left(u \right)}$$$.
Τότε $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (τα βήματα μπορούν να προβληθούν »).
Επίσης, έπεται ότι $$$u=\operatorname{acosh}{\left(x \right)}$$$.
Επομένως,
$$$\frac{\sqrt{x^{2} - 1}}{x} = \frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)}}$$$
Χρησιμοποιήστε την ταυτότητα $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)}}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}}$$$
Υποθέτοντας ότι $$$\sinh{\left( u \right)} \ge 0$$$, προκύπτουν τα ακόλουθα:
$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}} = \frac{\sinh{\left( u \right)}}{\cosh{\left( u \right)}}$$$
Το ολοκλήρωμα μπορεί να γραφεί εκ νέου ως
$${\color{red}{\int{\frac{\sqrt{x^{2} - 1}}{x} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}}$$
Πολλαπλασιάστε τον αριθμητή και τον παρονομαστή με ένα υπερβολικό συνημίτονο και εκφράστε τα υπόλοιπα σε όρους του υπερβολικού ημιτόνου, χρησιμοποιώντας τον τύπο $$$\cosh^2\left(\alpha \right)=\sinh^2\left(\alpha \right)+1$$$ με $$$\alpha= u $$$:
$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}}$$
Έστω $$$v=\sinh{\left(u \right)}$$$.
Τότε $$$dv=\left(\sinh{\left(u \right)}\right)^{\prime }du = \cosh{\left(u \right)} du$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\cosh{\left(u \right)} du = dv$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}} = {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$
Επαναγράψτε και διασπάστε το κλάσμα:
$${\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dv = c v$$$ με $$$c=1$$$:
$$- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{\int{1 d v}}} = - \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{v}}$$
Το ολοκλήρωμα του $$$\frac{1}{v^{2} + 1}$$$ είναι $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$v - {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = v - {\color{red}{\operatorname{atan}{\left(v \right)}}}$$
Θυμηθείτε ότι $$$v=\sinh{\left(u \right)}$$$:
$$- \operatorname{atan}{\left({\color{red}{v}} \right)} + {\color{red}{v}} = - \operatorname{atan}{\left({\color{red}{\sinh{\left(u \right)}}} \right)} + {\color{red}{\sinh{\left(u \right)}}}$$
Θυμηθείτε ότι $$$u=\operatorname{acosh}{\left(x \right)}$$$:
$$\sinh{\left({\color{red}{u}} \right)} - \operatorname{atan}{\left(\sinh{\left({\color{red}{u}} \right)} \right)} = \sinh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)} - \operatorname{atan}{\left(\sinh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)} \right)}$$
Επομένως,
$$\int{\frac{\sqrt{x^{2} - 1}}{x} d x} = \sqrt{x - 1} \sqrt{x + 1} - \operatorname{atan}{\left(\sqrt{x - 1} \sqrt{x + 1} \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{\sqrt{x^{2} - 1}}{x} d x} = \sqrt{x - 1} \sqrt{x + 1} - \operatorname{atan}{\left(\sqrt{x - 1} \sqrt{x + 1} \right)}+C$$
Απάντηση
$$$\int \frac{\sqrt{x^{2} - 1}}{x}\, dx = \left(\sqrt{x - 1} \sqrt{x + 1} - \operatorname{atan}{\left(\sqrt{x - 1} \sqrt{x + 1} \right)}\right) + C$$$A