Ολοκλήρωμα του $$$\sin{\left(x \right)} \cos^{2}{\left(\cos{\left(x \right)} \right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \sin{\left(x \right)} \cos^{2}{\left(\cos{\left(x \right)} \right)}\, dx$$$.
Λύση
Έστω $$$u=\cos{\left(x \right)}$$$.
Τότε $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\sin{\left(x \right)} dx = - du$$$.
Επομένως,
$${\color{red}{\int{\sin{\left(x \right)} \cos^{2}{\left(\cos{\left(x \right)} \right)} d x}}} = {\color{red}{\int{\left(- \cos^{2}{\left(u \right)}\right)d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=-1$$$ και $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$:
$${\color{red}{\int{\left(- \cos^{2}{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{\cos^{2}{\left(u \right)} d u}\right)}}$$
Εφαρμόστε τον τύπο υποβιβασμού δυνάμεων $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ με $$$\alpha= u $$$:
$$- {\color{red}{\int{\cos^{2}{\left(u \right)} d u}}} = - {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$:
$$- {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}} = - {\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}$$
Ολοκληρώστε όρο προς όρο:
$$- \frac{{\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}}}{2} = - \frac{{\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}}{2}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:
$$- \frac{\int{\cos{\left(2 u \right)} d u}}{2} - \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{\int{\cos{\left(2 u \right)} d u}}{2} - \frac{{\color{red}{u}}}{2}$$
Έστω $$$v=2 u$$$.
Τότε $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$du = \frac{dv}{2}$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$$- \frac{u}{2} - \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{2} = - \frac{u}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$- \frac{u}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2} = - \frac{u}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{2}$$
Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$- \frac{u}{2} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{4} = - \frac{u}{2} - \frac{{\color{red}{\sin{\left(v \right)}}}}{4}$$
Θυμηθείτε ότι $$$v=2 u$$$:
$$- \frac{u}{2} - \frac{\sin{\left({\color{red}{v}} \right)}}{4} = - \frac{u}{2} - \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{4}$$
Θυμηθείτε ότι $$$u=\cos{\left(x \right)}$$$:
$$- \frac{\sin{\left(2 {\color{red}{u}} \right)}}{4} - \frac{{\color{red}{u}}}{2} = - \frac{\sin{\left(2 {\color{red}{\cos{\left(x \right)}}} \right)}}{4} - \frac{{\color{red}{\cos{\left(x \right)}}}}{2}$$
Επομένως,
$$\int{\sin{\left(x \right)} \cos^{2}{\left(\cos{\left(x \right)} \right)} d x} = - \frac{\sin{\left(2 \cos{\left(x \right)} \right)}}{4} - \frac{\cos{\left(x \right)}}{2}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\sin{\left(x \right)} \cos^{2}{\left(\cos{\left(x \right)} \right)} d x} = - \frac{\sin{\left(2 \cos{\left(x \right)} \right)}}{4} - \frac{\cos{\left(x \right)}}{2}+C$$
Απάντηση
$$$\int \sin{\left(x \right)} \cos^{2}{\left(\cos{\left(x \right)} \right)}\, dx = \left(- \frac{\sin{\left(2 \cos{\left(x \right)} \right)}}{4} - \frac{\cos{\left(x \right)}}{2}\right) + C$$$A