Ολοκλήρωμα του $$$\sin^{2}{\left(x \right)} \sin{\left(2 x \right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}\, dx$$$.
Λύση
Εφαρμόστε τον τύπο υποβιβασμού δυνάμεων $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ με $$$\alpha=x$$$:
$${\color{red}{\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}}{2} d x}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(x \right)} = \left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}$$$:
$${\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)} d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{2}$$
Ολοκληρώστε όρο προς όρο:
$$\frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{\sin{\left(2 x \right)} \cos{\left(2 x \right)} d x} + \int{\sin{\left(2 x \right)} d x}\right)}}}{2}$$
Έστω $$$u=\sin{\left(2 x \right)}$$$.
Τότε $$$du=\left(\sin{\left(2 x \right)}\right)^{\prime }dx = 2 \cos{\left(2 x \right)} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\cos{\left(2 x \right)} dx = \frac{du}{2}$$$.
Επομένως,
$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} \cos{\left(2 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{u}{2} d u}}}}{2}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(u \right)} = u$$$:
$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{u}{2} d u}}}}{2} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{u d u}}{2}\right)}}}{2}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:
$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{u d u}}}}{4}=\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{4}=\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{4}$$
Θυμηθείτε ότι $$$u=\sin{\left(2 x \right)}$$$:
$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{u}}^{2}}{8} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(2 x \right)}}}^{2}}{8}$$
Έστω $$$u=2 x$$$.
Τότε $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{2}$$$.
Επομένως,
$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{2} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}$$
Το ολοκλήρωμα του ημιτόνου είναι $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
Θυμηθείτε ότι $$$u=2 x$$$:
$$- \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left({\color{red}{u}} \right)}}{4} = - \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Επομένως,
$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = - \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left(2 x \right)}}{4}$$
Απλοποιήστε:
$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = \frac{\sin^{4}{\left(x \right)}}{2} - \frac{1}{4}$$
Προσθέστε τη σταθερά ολοκλήρωσης (και αφαιρέστε τον σταθερό όρο από την παράσταση):
$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = \frac{\sin^{4}{\left(x \right)}}{2}+C$$
Απάντηση
$$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}\, dx = \frac{\sin^{4}{\left(x \right)}}{2} + C$$$A