Ολοκλήρωμα της $$$\sin{\left(2 t - 2 x \right)}$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \sin{\left(2 t - 2 x \right)}\, dx$$$.
Λύση
Έστω $$$u=2 t - 2 x$$$.
Τότε $$$du=\left(2 t - 2 x\right)^{\prime }dx = - 2 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = - \frac{du}{2}$$$.
Επομένως,
$${\color{red}{\int{\sin{\left(2 t - 2 x \right)} d x}}} = {\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{2}\right)d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=- \frac{1}{2}$$$ και $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{2}\right)d u}}} = {\color{red}{\left(- \frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
Το ολοκλήρωμα του ημιτόνου είναι $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
Θυμηθείτε ότι $$$u=2 t - 2 x$$$:
$$\frac{\cos{\left({\color{red}{u}} \right)}}{2} = \frac{\cos{\left({\color{red}{\left(2 t - 2 x\right)}} \right)}}{2}$$
Επομένως,
$$\int{\sin{\left(2 t - 2 x \right)} d x} = \frac{\cos{\left(2 t - 2 x \right)}}{2}$$
Απλοποιήστε:
$$\int{\sin{\left(2 t - 2 x \right)} d x} = \frac{\cos{\left(2 \left(- t + x\right) \right)}}{2}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\sin{\left(2 t - 2 x \right)} d x} = \frac{\cos{\left(2 \left(- t + x\right) \right)}}{2}+C$$
Απάντηση
$$$\int \sin{\left(2 t - 2 x \right)}\, dx = \frac{\cos{\left(2 \left(- t + x\right) \right)}}{2} + C$$$A