Ολοκλήρωμα της $$$\frac{\sin{\left(5 x - 3 \right)}}{t}$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{\sin{\left(5 x - 3 \right)}}{t}\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{t}$$$ και $$$f{\left(x \right)} = \sin{\left(5 x - 3 \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(5 x - 3 \right)}}{t} d x}}} = {\color{red}{\frac{\int{\sin{\left(5 x - 3 \right)} d x}}{t}}}$$
Έστω $$$u=5 x - 3$$$.
Τότε $$$du=\left(5 x - 3\right)^{\prime }dx = 5 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{5}$$$.
Επομένως,
$$\frac{{\color{red}{\int{\sin{\left(5 x - 3 \right)} d x}}}}{t} = \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{t}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{5}$$$ και $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{t} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{t}$$
Το ολοκλήρωμα του ημιτόνου είναι $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{5 t} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{5 t}$$
Θυμηθείτε ότι $$$u=5 x - 3$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{5 t} = - \frac{\cos{\left({\color{red}{\left(5 x - 3\right)}} \right)}}{5 t}$$
Επομένως,
$$\int{\frac{\sin{\left(5 x - 3 \right)}}{t} d x} = - \frac{\cos{\left(5 x - 3 \right)}}{5 t}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{\sin{\left(5 x - 3 \right)}}{t} d x} = - \frac{\cos{\left(5 x - 3 \right)}}{5 t}+C$$
Απάντηση
$$$\int \frac{\sin{\left(5 x - 3 \right)}}{t}\, dx = - \frac{\cos{\left(5 x - 3 \right)}}{5 t} + C$$$A