Ολοκλήρωμα της $$$\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}}$$$ ως προς $$$\pi$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}}$$$ ως προς $$$\pi$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}}\, d\pi$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(\pi \right)}\, d\pi = c \int f{\left(\pi \right)}\, d\pi$$$ με $$$c=\sin^{2}{\left(z \right)}$$$ και $$$f{\left(\pi \right)} = \frac{1}{\left(- \frac{\pi}{6} + z\right)^{3}}$$$:

$${\color{red}{\int{\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi}}} = {\color{red}{\sin^{2}{\left(z \right)} \int{\frac{1}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi}}}$$

Έστω $$$u=- \frac{\pi}{6} + z$$$.

Τότε $$$du=\left(- \frac{\pi}{6} + z\right)^{\prime }d\pi = - \frac{d\pi}{6}$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$d\pi = - 6 du$$$.

Επομένως,

$$\sin^{2}{\left(z \right)} {\color{red}{\int{\frac{1}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi}}} = \sin^{2}{\left(z \right)} {\color{red}{\int{\left(- \frac{6}{u^{3}}\right)d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=-6$$$ και $$$f{\left(u \right)} = \frac{1}{u^{3}}$$$:

$$\sin^{2}{\left(z \right)} {\color{red}{\int{\left(- \frac{6}{u^{3}}\right)d u}}} = \sin^{2}{\left(z \right)} {\color{red}{\left(- 6 \int{\frac{1}{u^{3}} d u}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=-3$$$:

$$- 6 \sin^{2}{\left(z \right)} {\color{red}{\int{\frac{1}{u^{3}} d u}}}=- 6 \sin^{2}{\left(z \right)} {\color{red}{\int{u^{-3} d u}}}=- 6 \sin^{2}{\left(z \right)} {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=- 6 \sin^{2}{\left(z \right)} {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=- 6 \sin^{2}{\left(z \right)} {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$

Θυμηθείτε ότι $$$u=- \frac{\pi}{6} + z$$$:

$$3 \sin^{2}{\left(z \right)} {\color{red}{u}}^{-2} = 3 \sin^{2}{\left(z \right)} {\color{red}{\left(- \frac{\pi}{6} + z\right)}}^{-2}$$

Επομένως,

$$\int{\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi} = \frac{3 \sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{2}}$$

Απλοποιήστε:

$$\int{\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi} = \frac{108 \sin^{2}{\left(z \right)}}{\left(- \pi + 6 z\right)^{2}}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi} = \frac{108 \sin^{2}{\left(z \right)}}{\left(- \pi + 6 z\right)^{2}}+C$$

Απάντηση

$$$\int \frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}}\, d\pi = \frac{108 \sin^{2}{\left(z \right)}}{\left(- \pi + 6 z\right)^{2}} + C$$$A


Please try a new game Rotatly