Ολοκλήρωμα της $$$i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}$$$ ως προς $$$x$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}$$$ ως προς $$$x$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}\, dx$$$.

Λύση

Εφαρμόστε τον τύπο υποβιβασμού δυνάμεων $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ με $$$\alpha=2 x$$$:

$${\color{red}{\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{i n t \left(\cos{\left(4 x \right)} + 1\right) \sin^{2}{\left(2 x \right)}}{2} d x}}}$$

Εφαρμόστε τον τύπο υποβιβασμού δυνάμεων $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ με $$$\alpha=2 x$$$:

$${\color{red}{\int{\frac{i n t \left(\cos{\left(4 x \right)} + 1\right) \sin^{2}{\left(2 x \right)}}{2} d x}}} = {\color{red}{\int{\frac{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right)}{4} d x}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{4}$$$ και $$$f{\left(x \right)} = i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right)$$$:

$${\color{red}{\int{\frac{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right)}{4} d x}}} = {\color{red}{\left(\frac{\int{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right) d x}}{4}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right) d x}}}}{4} = \frac{{\color{red}{\int{\left(- i n t \cos^{2}{\left(4 x \right)} + i n t\right)d x}}}}{4}$$

Ολοκληρώστε όρο προς όρο:

$$\frac{{\color{red}{\int{\left(- i n t \cos^{2}{\left(4 x \right)} + i n t\right)d x}}}}{4} = \frac{{\color{red}{\left(\int{i n t d x} - \int{i n t \cos^{2}{\left(4 x \right)} d x}\right)}}}{4}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=i n t$$$:

$$- \frac{\int{i n t \cos^{2}{\left(4 x \right)} d x}}{4} + \frac{{\color{red}{\int{i n t d x}}}}{4} = - \frac{\int{i n t \cos^{2}{\left(4 x \right)} d x}}{4} + \frac{{\color{red}{i n t x}}}{4}$$

Εφαρμόστε τον τύπο υποβιβασμού δυνάμεων $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ με $$$\alpha=4 x$$$:

$$\frac{i n t x}{4} - \frac{{\color{red}{\int{i n t \cos^{2}{\left(4 x \right)} d x}}}}{4} = \frac{i n t x}{4} - \frac{{\color{red}{\int{\frac{i n t \left(\cos{\left(8 x \right)} + 1\right)}{2} d x}}}}{4}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(x \right)} = i n t \left(\cos{\left(8 x \right)} + 1\right)$$$:

$$\frac{i n t x}{4} - \frac{{\color{red}{\int{\frac{i n t \left(\cos{\left(8 x \right)} + 1\right)}{2} d x}}}}{4} = \frac{i n t x}{4} - \frac{{\color{red}{\left(\frac{\int{i n t \left(\cos{\left(8 x \right)} + 1\right) d x}}{2}\right)}}}{4}$$

Expand the expression:

$$\frac{i n t x}{4} - \frac{{\color{red}{\int{i n t \left(\cos{\left(8 x \right)} + 1\right) d x}}}}{8} = \frac{i n t x}{4} - \frac{{\color{red}{\int{\left(i n t \cos{\left(8 x \right)} + i n t\right)d x}}}}{8}$$

Ολοκληρώστε όρο προς όρο:

$$\frac{i n t x}{4} - \frac{{\color{red}{\int{\left(i n t \cos{\left(8 x \right)} + i n t\right)d x}}}}{8} = \frac{i n t x}{4} - \frac{{\color{red}{\left(\int{i n t d x} + \int{i n t \cos{\left(8 x \right)} d x}\right)}}}{8}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=i n t$$$:

$$\frac{i n t x}{4} - \frac{\int{i n t \cos{\left(8 x \right)} d x}}{8} - \frac{{\color{red}{\int{i n t d x}}}}{8} = \frac{i n t x}{4} - \frac{\int{i n t \cos{\left(8 x \right)} d x}}{8} - \frac{{\color{red}{i n t x}}}{8}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=i n t$$$ και $$$f{\left(x \right)} = \cos{\left(8 x \right)}$$$:

$$\frac{i n t x}{8} - \frac{{\color{red}{\int{i n t \cos{\left(8 x \right)} d x}}}}{8} = \frac{i n t x}{8} - \frac{{\color{red}{i n t \int{\cos{\left(8 x \right)} d x}}}}{8}$$

Έστω $$$u=8 x$$$.

Τότε $$$du=\left(8 x\right)^{\prime }dx = 8 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{8}$$$.

Επομένως,

$$\frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\cos{\left(8 x \right)} d x}}}}{8} = \frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{8}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{8}$$$ και $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{8} = \frac{i n t x}{8} - \frac{i n t {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{8}\right)}}}{8}$$

Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\cos{\left(u \right)} d u}}}}{64} = \frac{i n t x}{8} - \frac{i n t {\color{red}{\sin{\left(u \right)}}}}{64}$$

Θυμηθείτε ότι $$$u=8 x$$$:

$$\frac{i n t x}{8} - \frac{i n t \sin{\left({\color{red}{u}} \right)}}{64} = \frac{i n t x}{8} - \frac{i n t \sin{\left({\color{red}{\left(8 x\right)}} \right)}}{64}$$

Επομένως,

$$\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} = \frac{i n t x}{8} - \frac{i n t \sin{\left(8 x \right)}}{64}$$

Απλοποιήστε:

$$\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} = \frac{i n t \left(8 x - \sin{\left(8 x \right)}\right)}{64}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} = \frac{i n t \left(8 x - \sin{\left(8 x \right)}\right)}{64}+C$$

Απάντηση

$$$\int i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}\, dx = \frac{i n t \left(8 x - \sin{\left(8 x \right)}\right)}{64} + C$$$A


Please try a new game Rotatly