Ολοκλήρωμα του $$$\sec^{4}{\left(\theta \right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \sec^{4}{\left(\theta \right)}\, d\theta$$$.
Λύση
Απομονώστε δύο τέμνουσες και εκφράστε τα υπόλοιπα ως προς την εφαπτομένη, χρησιμοποιώντας τον τύπο $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$ με $$$\alpha=\theta$$$:
$${\color{red}{\int{\sec^{4}{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\left(\tan^{2}{\left(\theta \right)} + 1\right) \sec^{2}{\left(\theta \right)} d \theta}}}$$
Έστω $$$u=\tan{\left(\theta \right)}$$$.
Τότε $$$du=\left(\tan{\left(\theta \right)}\right)^{\prime }d\theta = \sec^{2}{\left(\theta \right)} d\theta$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\sec^{2}{\left(\theta \right)} d\theta = du$$$.
Επομένως,
$${\color{red}{\int{\left(\tan^{2}{\left(\theta \right)} + 1\right) \sec^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\left(u^{2} + 1\right)d u}}}$$
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(u^{2} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{u^{2} d u}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:
$$\int{u^{2} d u} + {\color{red}{\int{1 d u}}} = \int{u^{2} d u} + {\color{red}{u}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:
$$u + {\color{red}{\int{u^{2} d u}}}=u + {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=u + {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Θυμηθείτε ότι $$$u=\tan{\left(\theta \right)}$$$:
$${\color{red}{u}} + \frac{{\color{red}{u}}^{3}}{3} = {\color{red}{\tan{\left(\theta \right)}}} + \frac{{\color{red}{\tan{\left(\theta \right)}}}^{3}}{3}$$
Επομένως,
$$\int{\sec^{4}{\left(\theta \right)} d \theta} = \frac{\tan^{3}{\left(\theta \right)}}{3} + \tan{\left(\theta \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\sec^{4}{\left(\theta \right)} d \theta} = \frac{\tan^{3}{\left(\theta \right)}}{3} + \tan{\left(\theta \right)}+C$$
Απάντηση
$$$\int \sec^{4}{\left(\theta \right)}\, d\theta = \left(\frac{\tan^{3}{\left(\theta \right)}}{3} + \tan{\left(\theta \right)}\right) + C$$$A