Ολοκλήρωμα του $$$\sec^{6}{\left(x \right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \sec^{6}{\left(x \right)}\, dx$$$.
Λύση
Απομονώστε δύο τέμνουσες και εκφράστε τα υπόλοιπα ως προς την εφαπτομένη, χρησιμοποιώντας τον τύπο $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$ με $$$\alpha=x$$$:
$${\color{red}{\int{\sec^{6}{\left(x \right)} d x}}} = {\color{red}{\int{\left(\tan^{2}{\left(x \right)} + 1\right)^{2} \sec^{2}{\left(x \right)} d x}}}$$
Έστω $$$u=\tan{\left(x \right)}$$$.
Τότε $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\sec^{2}{\left(x \right)} dx = du$$$.
Επομένως,
$${\color{red}{\int{\left(\tan^{2}{\left(x \right)} + 1\right)^{2} \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\left(u^{2} + 1\right)^{2} d u}}}$$
Expand the expression:
$${\color{red}{\int{\left(u^{2} + 1\right)^{2} d u}}} = {\color{red}{\int{\left(u^{4} + 2 u^{2} + 1\right)d u}}}$$
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(u^{4} + 2 u^{2} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{2 u^{2} d u} + \int{u^{4} d u}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:
$$\int{2 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\int{1 d u}}} = \int{2 u^{2} d u} + \int{u^{4} d u} + {\color{red}{u}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=4$$$:
$$u + \int{2 u^{2} d u} + {\color{red}{\int{u^{4} d u}}}=u + \int{2 u^{2} d u} + {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=u + \int{2 u^{2} d u} + {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=2$$$ και $$$f{\left(u \right)} = u^{2}$$$:
$$\frac{u^{5}}{5} + u + {\color{red}{\int{2 u^{2} d u}}} = \frac{u^{5}}{5} + u + {\color{red}{\left(2 \int{u^{2} d u}\right)}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:
$$\frac{u^{5}}{5} + u + 2 {\color{red}{\int{u^{2} d u}}}=\frac{u^{5}}{5} + u + 2 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=\frac{u^{5}}{5} + u + 2 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Θυμηθείτε ότι $$$u=\tan{\left(x \right)}$$$:
$${\color{red}{u}} + \frac{2 {\color{red}{u}}^{3}}{3} + \frac{{\color{red}{u}}^{5}}{5} = {\color{red}{\tan{\left(x \right)}}} + \frac{2 {\color{red}{\tan{\left(x \right)}}}^{3}}{3} + \frac{{\color{red}{\tan{\left(x \right)}}}^{5}}{5}$$
Επομένως,
$$\int{\sec^{6}{\left(x \right)} d x} = \frac{\tan^{5}{\left(x \right)}}{5} + \frac{2 \tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\sec^{6}{\left(x \right)} d x} = \frac{\tan^{5}{\left(x \right)}}{5} + \frac{2 \tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}+C$$
Απάντηση
$$$\int \sec^{6}{\left(x \right)}\, dx = \left(\frac{\tan^{5}{\left(x \right)}}{5} + \frac{2 \tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}\right) + C$$$A