Ολοκλήρωμα του $$$\tan^{3}{\left(x \right)} \sec^{3}{\left(x \right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \tan^{3}{\left(x \right)} \sec^{3}{\left(x \right)}\, dx$$$.
Λύση
Εξαγάγετε ως παράγοντα μία εφαπτομένη και γράψτε τα υπόλοιπα σε όρους της τέμνουσας, χρησιμοποιώντας τον τύπο $$$\tan^2\left(x \right)=\sec^2\left(x \right)-1$$$:
$${\color{red}{\int{\tan^{3}{\left(x \right)} \sec^{3}{\left(x \right)} d x}}} = {\color{red}{\int{\left(\sec^{2}{\left(x \right)} - 1\right) \tan{\left(x \right)} \sec^{3}{\left(x \right)} d x}}}$$
Έστω $$$u=\sec{\left(x \right)}$$$.
Τότε $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$.
Επομένως,
$${\color{red}{\int{\left(\sec^{2}{\left(x \right)} - 1\right) \tan{\left(x \right)} \sec^{3}{\left(x \right)} d x}}} = {\color{red}{\int{u^{2} \left(u^{2} - 1\right) d u}}}$$
Expand the expression:
$${\color{red}{\int{u^{2} \left(u^{2} - 1\right) d u}}} = {\color{red}{\int{\left(u^{4} - u^{2}\right)d u}}}$$
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(u^{4} - u^{2}\right)d u}}} = {\color{red}{\left(- \int{u^{2} d u} + \int{u^{4} d u}\right)}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=4$$$:
$$- \int{u^{2} d u} + {\color{red}{\int{u^{4} d u}}}=- \int{u^{2} d u} + {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=- \int{u^{2} d u} + {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:
$$\frac{u^{5}}{5} - {\color{red}{\int{u^{2} d u}}}=\frac{u^{5}}{5} - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=\frac{u^{5}}{5} - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Θυμηθείτε ότι $$$u=\sec{\left(x \right)}$$$:
$$- \frac{{\color{red}{u}}^{3}}{3} + \frac{{\color{red}{u}}^{5}}{5} = - \frac{{\color{red}{\sec{\left(x \right)}}}^{3}}{3} + \frac{{\color{red}{\sec{\left(x \right)}}}^{5}}{5}$$
Επομένως,
$$\int{\tan^{3}{\left(x \right)} \sec^{3}{\left(x \right)} d x} = \frac{\sec^{5}{\left(x \right)}}{5} - \frac{\sec^{3}{\left(x \right)}}{3}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\tan^{3}{\left(x \right)} \sec^{3}{\left(x \right)} d x} = \frac{\sec^{5}{\left(x \right)}}{5} - \frac{\sec^{3}{\left(x \right)}}{3}+C$$
Απάντηση
$$$\int \tan^{3}{\left(x \right)} \sec^{3}{\left(x \right)}\, dx = \left(\frac{\sec^{5}{\left(x \right)}}{5} - \frac{\sec^{3}{\left(x \right)}}{3}\right) + C$$$A